If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2-108=0
a = 5; b = 0; c = -108;
Δ = b2-4ac
Δ = 02-4·5·(-108)
Δ = 2160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2160}=\sqrt{144*15}=\sqrt{144}*\sqrt{15}=12\sqrt{15}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{15}}{2*5}=\frac{0-12\sqrt{15}}{10} =-\frac{12\sqrt{15}}{10} =-\frac{6\sqrt{15}}{5} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{15}}{2*5}=\frac{0+12\sqrt{15}}{10} =\frac{12\sqrt{15}}{10} =\frac{6\sqrt{15}}{5} $
| 2x+3(6x+22)=14 | | -94-x-10x=71 | | b^2+1-2b=0 | | 7/8=12/x+3 | | 3r(4r-3)(3r-1)=0 | | 1/2(x^2)=(17)1/2 | | (4p+9)(p+8)=0 | | 19X+18y=100 | | x2=42−x2 | | x-3x/x+2=6/x+2 | | 11/3x=10 | | (1/2x+42)+(1/4x-10)=x-623 | | 1/3x-10=4x | | 1/3x-4x=10 | | 3a+6=3a-4 | | 8^6+3x=4 | | (K+5)(k-6)=0 | | 29-5w=12 | | (3x+36)^2=27 | | 9x-8/3=9x-3/2 | | -7x+4=10+x | | 5x^2-40x+76=0 | | P+a=20 | | -3w-32=7(w+4) | | A+p=20 | | 4.3^2+b^2=10^2 | | 18=7b+8 | | X=4+40i/4 | | 9-k+87=67k-9 | | 13.75x=165 | | A-4/2=3a/4+a-27/6 | | √3x-1=5 |